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Abstract
The generalized random energy model is a generalization of the random energy
model introduced by Derrida to mimic the ultrametric structure of the Parisi
solution of the Sherrington–Kirkpatrick model of a spin glass. It was solved
exactly in two special cases by Derrida and Gardner. A complete solution for
the thermodynamics in the general case was given by Capocaccia et al. Here
we use large deviation theory to analyse the model in a very straightforward
way. We also show that the variational expression for the free energy can be
evaluated easily using the Cauchy–Schwarz inequality.

PACS numbers: 75.10.Nf, 05.50.+q

Introduction

The generalized random energy model (GREM) was introduced by Derrida [1] as a
generalization of his random energy model (see Derrida [2]) of a spin glass in order to
incorporate some correlations between energy levels. The GREM is one of the few spin glass
models which lends itself to rigorous analysis, not only for the free energy density (Capocaccia
et al [3]), but also for the fluctuations (Galves et al [4]) and dynamical properties (Ben Arous
et al [5]).

The purpose of the present paper is to show how the theory of large deviations is the most
natural avenue of attack when solving these models (if they are exactly solvable). This was
done for the REM by Dorlas and Wedagedera [6]. An introduction to large deviations can be
found in the books [7–9].

In section 1 we describe the model. In section 2 we give an expression for the rate function
of the measures associated with the energies on different levels of the tree. In section 3 we
give an explicit form for the free energy by applying Varadhan’s lemma and then solving the
associated variational problem.
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http://stacks.iop.org/ja/35/4385


4386 T C Dorlas and W M B Dukes

E
(1)
1 E

(1)
2 E

(1)

αN
1

E
(n)
1 E

(n)
2N

E
(2)
1 E

(2)
2

E
(2)
(α1α2)N

E1 E2 E2N

ρ1

ρ2

ρk

ρn

Figure 1. The tree-like structure of the GREM. The nodes on the nth layer represent the
configurations. The energy of any configuration is the sum of the energies on the branches up to
the source node.

1. Definition of the GREM

Whereas in the random energy model all energy levels Ei are i.i.d. random variables, and the
partition function is given by

ZN(β) =
2N∑
i=1

e−βEi

the energy levels of the generalized model have a tree-like structure. The tree is defined by
a number of levels n and for each level k = 1, . . . , n, a number αk ∈ (1, 2) determines the
number of branches per node (see figure 1). To make the total number of highest-level branches
in the tree add up to 2N as before, it is assumed that

∏n
i=1 αk = 2. For each k = 1, . . . , n

there are (α1 · · ·αk)N independent random variables
{
E
(k)

j

}
, distributed according to ρ(k)N with

density

ρ
(k)

N (E) = 1√
akπNJ 2

e−E2/akNJ 2
(1.1)

where the positive numbers ak satisfy
∑n

k=1 ak = 1. (Obviously, in general αNk is not an
integer, but we can take its integer part which is very nearly the same for large N. We shall
disregard the difference in the following.)

The partition function of the GREM is defined by

ZN(β) =
αN1∑
i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
in−1α

N
n∑

in=(in−1−1)αNn +1

exp

[
−β

(
n∑

k=1

E
(k)
ik

)]
. (1.2)

The energy levels of the GREM are sums of energies corresponding to the different levels of
the tree. This introduces a hierarchical dependence between energy levels similar to that in
Parisi’s solution of the Sherrington–Kirkpatrick model [10–12]. The previous formula is best
understood by referring to figure 1.
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As usual the free energy is defined by

f (β) = − 1

β
lim
N→∞

1

N
lnZN(β). (1.3)

We shall prove that this limit exists almost surely w.r.t. the distribution of the energies
{
E
(k)
i

}
.

To do this, we introduce the random distribution functionsFN(x1, . . . , xn) and F̄ N(x1, . . . , xn)

as follows:

FN(x1, . . . , xn) := 1

2N

αN1∑
i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
in−1α

N
n∑

in=(in−1−1)αNn +1

1̄1(1)i1
1̄1(2)i2

· · · 1̄1(n)in

(1.4)

F̄ N(x1, . . . , xn) := 1

2N

αN1∑
i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
in−1α

N
n∑

in=(in−1−1)αNn +1

11(1)i1
11(2)i2

· · · 11(n)in

where we use the notation 11(k)i , 1̄1(k)i for the indicator functions of the sets
{
E
(k)
i > Nxk

}
and{

E
(k)
i � Nxk

}
, respectively. We also define GN and ḠN as

GN(x1, . . . , xn) =
∫ Nx1

−∞
· · ·
∫ Nxn

−∞
ρ
(1)
N (E1) · · ·ρ(n)N (En) dEn · · · dE1

ḠN(x1, . . . , xn) :=
∫ +∞

Nx1

· · ·
∫ +∞

Nxn

ρ
(1)
N (E1) · · · ρ(n)N (En) dEn · · · dE1.

We will abbreviate ḠN(x1, . . . , xn) to ḠN and F̄ N (x1, . . . , xn) to F̄ N . Let us also use, as
short-hand,

pk := P
(
E(k) > Nxk

)
where P denotes the probability w.r.t. the distribution (1.1). Note that ḠN = p1p2 · · ·pn. In
the following section we prove a large deviation principle (LDP) for the distribution functions
FN analogous to that of Dorlas and Wedagedera [6].

2. The rate function

Theorem 2.1. The sequence of measures µN(x1, . . . , xn) with distribution function
FN(x1, . . . , xn) satisfies a LDP, almost surely with respect to the randomness, with rate
function I (x1, . . . , xn) given by

I (x1, . . . , xn) =




1

J 2

∑
1�i�n

x2
i

ai
if (x1, . . . , xn) ∈ �(J ; a1, . . . , an; α1, . . . , αn)

+∞ otherwise

where the region �(J ; a1, . . . , an; α1, . . . , αn) is given by{
(x1, . . . , xn) ∈ R

n

∣∣∣∣∣
k∑

i=1

x2
i

ai
� J 2

k∑
i=1

ln αi for all 1 � k � n

}
.

Proof. First we do the case for (x1, . . . , xn) ∈ �(J ; a1, . . . , an; α1, . . . , αn). By Chebyshev’s
inequality, for all ε ∈ (0, 1),

P(|F̄ N − ḠN | > εḠN) � 1

ε2Ḡ2
N

E
(|F̄ N − ḠN |2) .
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Now

E
(|F̄ N − ḠN |2) = E

(
F̄ 2
N

)− 2ḠNE(F̄ N ) + Ḡ2
N

and

E(F̄ N ) = 1

2N
E


 αN1∑

i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
in−1α

N
n∑

in=(in−1−1)αNn +1

11(1)i1
11(2)i2

· · · 11(n)in




= 1

2N
αN1 p1α

N
2 p2 · · ·αNn pn

= p1p2 · · ·pn
= ḠN .

To obtain E
(
F̄ 2
N

)
we introduce some new notation. Let

Bk := E




ik=αN
k

jk=αN
k∑

ik=1
jk=1

11(k)ik
11(k)jk

ik+1=ikαNk+1
jk+1=jk αNk+1∑

ik+1=(ik−1)αN
k+1+1

jk+1=(jk−1)αN
k+1+1

11(k+1)
ik+1

11(k+1)
jk+1

· · ·
in=in−1α

N
n

jk=jn−1α
N
n∑

in=(in−1−1)αNn +1

jn=(jn−1−1)αNn +1

11(n)in
11(n)jn



.

Now notice that the following recursion holds:

Bk = αNk pk

(
Bk+1 +

(
αNk − 1

)
pk
(
αNk+1pk+1 · · ·αNn pn

)2)
for all 1 � k < n. The initial value is Bn = αNn pn +

(
α2N
n − αNn

)
p2
n but this may be

obtained by defining Bn+1 := 1 and applying the above recursion for k = n. Notice also that
E
(
F̄ 2
N

) = 1
22N B1.

Alongside the above recursion, let us define a sequence Dk by which we upper bound Bk .
Let Dn+1 := 1 and define

Dk = yk
(Dk+1 + yk(yk+1 · · · yn)2) .

This gives rise to

D1 = y1y2 · · · yn(1 + yn + yn−1yn + · · · + y1y2 · · · yn).
If we now take yk = αNk pk , then it is clear thatDk � Bk for all 1 � k � n, hence the following
bound:

E
(
F̄

2
N

) = 1

22N
B1

� 1

22N
D1

=

 ∏

1�k�n

αNk pk


(1 +

n∑
k=1

αNk pk · · ·αNn pn
)

= 2NḠN

(
1 +

n∑
k=1

αNk pk · · ·αNn pn
)
.
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Thus

1

ε2Ḡ
2
N

E
(|F̄ N − ḠN |2) � 1

ε2Ḡ
2
N

{
1

22N
2NḠN

(
1 +

n∑
k=1

αNk pk · · ·αNn pn
)

− Ḡ
2
N

}

= 1

ε2Ḡ
2
N

{
1

2N
ḠN

(
1 +

n∑
k=1

αNk pk · · ·αNn pn
)

− Ḡ
2
N

}

= 1

ε2Ḡ
2
N

{
1

2N
ḠN

(
1 + 2NḠN +

n∑
k=2

αNk pk · · ·αNn pn
)

− Ḡ
2
N

}

= 1

ε22NḠN

{
1 +

n∑
k=2

αNk pk · · ·αNn pn
}

= 1

ε22NḠN

+
1

ε2

n∑
k=2

αNk pk · · ·αNn pn
2Np1p2 · · ·pn

= 1

ε22NḠN

+
1

ε2

n∑
k=2

1

αN1 p1 · · ·αNk−1pk−1

= 1

ε22NḠN

+
1

ε2

n−1∑
k=1

1

αN1 p1 · · ·αNk pk

= 1

ε2

n∑
k=1

1

αN1 p1 · · ·αNk pk
. (2.1)

Using the inequality
∫∞
a

e−u2/2 du > 1
a+a−1 e−a2/2 (see McKean [13]), the kth term in this sum

is bounded above by

1

ε2



∏

1�i�k

√
π
(
2Nx2

i + aiJ
2
)

xiJ
√
aiN


 exp


N

J 2


−J 2

k∑
i=1

ln αi +
∑

1�i�k

x2
i

ai




 .

which will converge if and only if
∑

1�i�k

x2
i

ai
< J 2

∑
1�i�k lnαi . Thus it is seen that equation

(2.1) converges if all the sums of its individual terms converge. The values for which this
happens are precisely those which define the region �(J ; a1, . . . , an; α1, . . . , αn) as stated in
the theorem. Introducing the events

AN =
{{
E
(1)
i1
, . . . , E

(n)

in

}∣∣|ḠN − F̄ N | > εḠN

}
we see that

∑
N P(AN) < +∞. Hence by the Borel–Cantelli lemma,

P

( ∞⋂
v=1

∞⋃
N=v

AN

)
= 0.

This means that with probability 1,

{
E
(1)
i1
, . . . , E

(n)
in

} ∈
( ∞⋂
v=1

∞⋃
N=v

AN

)C

=
∞⋃
v=1

∞⋂
N=v

AC
N.

In other words, for almost all
{
E
(1)
i1
, . . . , E

(n)
in

}
there exists a v ∈ N such that for all N � v,{

E
(1)
i1
, . . . , E

(n)
in

} ∈ AC
N . Hence F̄ N converges to ḠN with probability 1 for all N � v.
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For the case (x1, . . . , xn) 
∈ �(J ; a1, . . . , an; α1, . . . , αn), it must hold that∑
1�i�k

x2
i

ai
> J 2

∑
1�i�k

lnαi

for some k with 1 � k � n. We may now upper bound the function F̄ N (x1, . . . , xn) by

F̄ N(x1, . . . , xn) � 1

2N
αNk+1 · · ·αNn

αN1∑
i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
ik−1α

N
k∑

ik=(ik−1−1)αNk +1

11(1)i1
11(2)i2

· · · 11(k)ik

= 1

αN1 · · ·αNk

αN1∑
i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
ik−1α

N
k∑

ik=(ik−1−1)αNk +1

11(1)i1
11(2)i2

· · · 11(k)ik

= : HN(x1, . . . , xk).

We will show that HN(x1, . . . , xk) = 0 with probability 1 if N is large enough. We have

{{
E
(1)
i1
, . . . , E

(k)
ik

}∣∣HN(x1, . . . , xk) = 0
}

=

{E(1)

i1
, . . . , E

(k)

ik

} ∣∣∣∣∣∣
αN1∑
i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
ik−1α

N
k∑

ik=(ik−1−1)αNk +1

11(1)i1
11(2)i2

· · · 11(k)ik
< 1


 .

By Chebyshev’s inequality,

P


 αN1∑

i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
ik−1α

N
k∑

ik=(ik−1−1)αNk +1

11(1)i1
11(2)i2

· · · 11(k)ik
� 1




� E


 αN1∑

i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
ik−1α

N
k∑

ik=(ik−1−1)αNk +1

11(1)i1
11(2)i2

· · · 11(k)ik




= αN1 · · ·αNk P
(
E(1) > Nx1

) · · · P(E(k) > Nxk
)

� αN1 · · ·αNk
∏

1�i�k

J
√
ai

2xi
√
πN

exp

(
−Nx2

i

aiJ 2

)

=

 ∏

1�i�k

J
√
ai

2xi
√
πN


 exp


N

∑
1�i�k

(
lnαi − x2

i

aiJ 2

)
 .

Since ∑
1�i�k

x2
i

ai
> J 2

∑
1�i�k

lnαi

the series

∞∑
N=1


 ∏

1�i�k

J
√
ai

2xi
√
πN


 exp


N

∑
1�i�k

(
lnαi − x2

i

aiJ 2

)
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converges. Introducing the events

AN =

{E(1)

i1
, . . . , E

(k)

ik

} ∣∣∣∣∣∣
αN1∑
i1=1

i1α
N
2∑

i2=(i1−1)αN2 +1

· · ·
ik−1α

N
k∑

ik=(ik−1−1)αNk +1

11(1)i1
11(2)i2

· · · 11(k)ik
� 1




we see again by the Borel–Cantelli lemma, for almost all
{
E
(1)
i1
, . . . , E

(k)

ik

}
there exists a

v ∈ N such that for all N � v,
{
E
(1)
i1
, . . . , E

(k)

ik

} ∈ AC
N and hence HN(x1, . . . , xk) = 0. Thus

we have:

lim sup
N

1

N
ln F̄ N (x1, . . . , xn) � lim sup

N

1

N
lnHN(x1, . . . , xk)

= −∞. �

3. The variational problem

We may re-write the partition function in (1.2) as

ZN(β) = 2N
∫

R
n

exp {−Nβ(x1 + · · · + xn)} dFN(x1, . . . , xn)

where FN(x1, . . . , xn) is given in (1.4). Using Varadhan’s lemma, we may evaluate −βf (β)

almost surely as follows:

−βf (β) = lim
N→∞

1

N
{lnZN(β)}

= ln 2 + sup
(x1,...,xn)∈R

n

{−β(x1 + · · · + xn)− I (x1, . . . , xn)}

= ln 2 − inf
x∈�

{
n∑

i=1

x2
i

aiJ 2
+ βxi

}

= ln 2 +
1

4
β2J 2 − 1

J 2
inf
x∈�

{
n∑
i=1

1

ai

(
xi +

1

2
aiβJ

2

)2
}
.

Performing the change of variables: xi = Jyi
√
ai , β ′ = 1

2βJ and γi = lnαi , the above
expression becomes

= ln 2 +
1

4
β2J 2 − inf

y∈� ′

{
n∑
i=1

(
yi − √

aiβ
′)2

}

where

� ′ =
{
(y1, . . . , yn) ∈ R

n

∣∣∣∣∣
k∑

i=1

y2
i �

k∑
i=1

γi for all 1 � k � n

}
.

3.1. Evaluation of the infimum in R
n

Define the numbers B(j, k) for all 1 � j � k � n:

B(j, k) :=
√
γj + · · · + γk

aj + · · · + ak
.

Let m0 := 0 and recursively define the numbers mi as

mi := inf {m > mi−1|B(mi−1 + 1,m) � B(mi−1 + 1, l) for all mi−1 + 1 � l � n}
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terminating at the value K such that mK = n. A crucial property of algebraic expressions
such as B(j, k) is the following: if a, b, c and d are positive reals, then a

b
< c

d
if and only if

a
b
< a+c

b+d . Define the sequence of inverse temperatures βi (i = 0, . . . ,K + 1) by

βi := B(mi−1 + 1,mi) i = 1, . . . ,K

and β0 := 0, βK+1 := +∞. Note that this sequence is increasing by the above property.

Lemma 3.1 . If βj < β ′ < βj+1 for some 0 � j � K , then the infimum is attained at x given
by

xi =
{
βl

√
ai if i ∈ [ml−1 + 1, . . . ,ml] for some 1 � l � j

β ′√ai if i ∈ [mj + 1, . . . , n]

for all 1 � i � n.

Proof. Let pi = √
ai for all 1 � i � n. We will show that the point x with coordinates given

above is the point such that for all y ∈ � ′, ‖ y − β ′ p ‖� ‖ x − β ′ p ‖. First, let us note two
trivial inequalities,

j∑
l=1

ml∑
i=ml−1+1

(yi − βlpi)
2 � 0 (3.1)

n∑
i=mj +1

(yi − β ′pi)2 � 0. (3.2)

Note that for all 1 � l � j ,
(
β ′
βl

− 1
)
> 0. By the Cauchy–Schwarz inequality we have, for all

1 � j ′ � j ,

j ′∑
l=1

ml∑
i=ml−1+1

βlpiyi �
( mj ′∑

i=1

y2
i

)1/2

 j ′∑

l=1

ml∑
i=ml−1+1

β2
l p

2
i




1/2

�
( mj ′∑

i=1

γi

)1/2

 j ′∑

l=1

β2
l

ml∑
i=ml−1+1

p2
i




1/2

.

Notice that
∑j ′

l=1 β
2
l

∑ml

i=ml−1+1p
2
i = ∑j ′

l=1

∑ml

i=ml−1+1γi = ∑mj ′
i=1 γi and so the above expression

becomes

=
j ′∑
l=1

β2
l

ml∑
i=ml−1+1

p2
i .

Thus we have
j ′∑
l=1

ml∑
i=ml−1+1

βlpi(βlpi − yi) � 0

for all 1 � j ′ � j and y ∈ � ′. Introducing the numbers
(
β ′
βl

− 1
)

into the sum, it is shown by
a recursive argument (see appendix) that

j∑
l=1

(
β ′

βl
− 1

) ml∑
i=ml−1+1

βlpi(βlpi − yi) � 0.
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Multiplying the above inequality by 2 and re-writing we have

2
j∑
l=1

ml∑
i=ml−1+1

(β ′pi − βlpi)(βlpi − yi) � 0. (3.3)

Combining equations (3.1), (3.2) and (3.3) while noting that β ′pi =: xi (for mj + 1 � i � n)
and βlpi =: xi (for 1 � i � mj ), we have

(y − x) · (y + x − 2β ′ p) � 0.

Re-writing gives

‖ x − β ′ p ‖� ‖ y − β ′ p ‖
for all y ∈ � ′. �

3.2. Expression for the free energy and conclusion

Applying the coordinates of our point of infimum to the expression for the free energy gives
the required expressions. Recalling β ′ := 1

2βJ , pi = √
ai and γi = ln αi gives

Corollary 3.2. The free energy is given by

−βf (β) =




ln 2 +
1

4
β2J 2 if β <

2

J
β1

n∑
i=mj +1

(
lnαi +

β2J 2ai

4

)
+ βJ

j∑
l=1

√√√√√

 ml∑

i=ml−1+1

ai




 ml∑

i=ml−1+1

ln αi




if
2

J
βj < β <

2

J
βj+1

βJ

K∑
l=1

√√√√√

 ml∑

i=ml−1+1

ai




 ml∑

i=ml−1+1

lnαi


 if

2

J
βK < β.

Applying n = 2 to the above expression yields the same answer as Derrida [1]. In this case
the answer depends on whether a1/ lnα1 ≷ a2/ ln α2. If a1/ lnα1 > a2/ ln α2, then

−βf (β) =




ln 2 +
J 2β2

4
if β <

2

J

√
ln α1

a1

lnα2 +
1

4
a2β

2J 2 + βJ
√
a1 lnα1 if

2

J

√
lnα1

a1
< β <

2

J

√
ln α2

a2

βJ
√
a1 ln α1 + βJ

√
a2 lnα2 if

2

J

√
lnα2

a2
< β.

Otherwise,

−βf (β) =




ln 2 +
J 2β2

4
if β <

2
√

ln 2

J

βJ
√

ln 2 if β >
2
√

ln 2

J
.
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It is an easy exercise to see the solutions also concur for cases A and B in Derrida and Gardner
[14]. Notice that the Capocaccia et al [3] solution to the variational problem contains a few
minor flaws: in their notation, they should have J ,

0 = 0 and the definition of βk should be
β2
k := BJ,

k−1+1,J ,
k
.

An added benefit of our approach is that in theorem 2.1 we have proved a LDP for
the measures µN(x1, . . . , xn). This result contains much more information than is needed
for deriving the variational expression for the free energy. This leaves open the possibility
of calculating other aspects of the GREM. Moreover, variants of the model, where one for
example replaces the energies

∑
E
(k)
ik

by 1
n

(∑
E
(k)
ik

)2
can also be solved.
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Appendix

Lemma A. Let x1, x2, . . . , xn > 0 and {yi}ni=1 be a sequence of reals. Let Gm := ∑m
i=1 yi be

such that Gm � 0 for all 1 � m � n. Then

F(n) :=
n∑
i=1

xiyi � 0.

Proof. Let us define G0 = 0. Notice that yi = Gi −Gi−1 for all 1 � i � n. Then

F(n) =
n∑
i=1

xi (Gi −Gi−1)

= xnG(n) +
n∑
i=1

(xi − xi−1)G(i)

� 0

since xi − xi−1 > 0 for all i. �
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