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Abstract

The generalized random energy model is a generalization of the random energy
model introduced by Derrida to mimic the ultrametric structure of the Parisi
solution of the Sherrington—Kirkpatrick model of a spin glass. It was solved
exactly in two special cases by Derrida and Gardner. A complete solution for
the thermodynamics in the general case was given by Capocaccia et al. Here
we use large deviation theory to analyse the model in a very straightforward
way. We also show that the variational expression for the free energy can be
evaluated easily using the Cauchy—Schwarz inequality.

PACS numbers: 75.10.Nf, 05.50.+q

Introduction

The generalized random energy model (GREM) was introduced by Derrida [1] as a
generalization of his random energy model (see Derrida [2]) of a spin glass in order to
incorporate some correlations between energy levels. The GREM is one of the few spin glass
models which lends itself to rigorous analysis, not only for the free energy density (Capocaccia
et al [3]), but also for the fluctuations (Galves et al [4]) and dynamical properties (Ben Arous
et al [5)).

The purpose of the present paper is to show how the theory of large deviations is the most
natural avenue of attack when solving these models (if they are exactly solvable). This was
done for the REM by Dorlas and Wedagedera [6]. An introduction to large deviations can be
found in the books [7-9].

In section 1 we describe the model. In section 2 we give an expression for the rate function
of the measures associated with the energies on different levels of the tree. In section 3 we
give an explicit form for the free energy by applying Varadhan’s lemma and then solving the
associated variational problem.
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Figure 1. The tree-like structure of the GREM. The nodes on the nth layer represent the
configurations. The energy of any configuration is the sum of the energies on the branches up to
the source node.

1. Definition of the GREM

Whereas in the random energy model all energy levels E; are i.i.d. random variables, and the
partition function is given by

ZN
ZyB)y =) et
i=1

the energy levels of the generalized model have a tree-like structure. The tree is defined by
a number of levels n and for each level kK = 1, ..., n, a number «; € (1,2) determines the
number of branches per node (see figure 1). To make the total number of highest-level branches
in the tree add up to 2N as before, it is assumed that ]_[;’21 o = 2. Foreachk =1,...,n
there are (o - - - o) independent random variables {E;k) }, distributed according to pl(\f) with
density

1
PN(E) =~ e E/N (1.1

\ agT NJ 2
where the positive numbers a; satisfy > ;_, ax = 1. (Obviously, in general ' is not an
integer, but we can take its integer part which is very nearly the same for large N. We shall
disregard the difference in the following.)
The partition function of the GREM is defined by

af’ ilaé" i,,,la,l;’ n
k
R VD SEERIED S R ot | R
=1 jy=(i; —1)a) +1 in=(i,—1—Dal +1 k=1

The energy levels of the GREM are sums of energies corresponding to the different levels of
the tree. This introduces a hierarchical dependence between energy levels similar to that in
Parisi’s solution of the Sherrington—Kirkpatrick model [10-12]. The previous formula is best
understood by referring to figure 1.



Large deviation approach to the GREM 4387

As usual the free energy is defined by

1 1
=——1lim —InZ . 1.3
FB) = =5 Jim 10 Zx(B) (13)
We shall prove that this limit exists almost surely w.r.t. the distribution of the energies {E l-(k) }
To do this, we introduce the random distribution functions Fy (xi, ..., x,) and F y(xy, ..., x,)
as follows:
N ’lo‘z inoro
. (1) (2) 7(n)
i1=1 jy=(i; —1)a) +1 in=(ip—1— Do +1
(1.4)
N 11112 i,,,lotﬁv
_ . (1) (2) (n)
i=li=(—Dad+1 =i, —Day+1

where we use the notation llfk) , I_lfk)for the indicator functions of the sets {El.(k) > Nx;} and
{El.(k) < Nxi}, respectively. We also define Gy and Gy as

Nxy
Gy(xi,... xn)—/ / PN (ED) - p (Ey) dE, - - - dE,

G (X1, Xy) = f f oy (E1) -+ o\ (E) AE, - - dE).
Nxy Nx,
We will abbreviate Gy (x1, ..., x,) to Gy and Fy(xy,...,x,) to Fy. Let us also use, as
short-hand,
Dk = ]P’(E(k) > ka)

where P denotes the probability w.r.t. the distribution (1.1). Note that Gy = pip2--- p,. In
the following section we prove a large deviation principle (LDP) for the distribution functions
Fy analogous to that of Dorlas and Wedagedera [6].

2. The rate function

Theorem 2.1. The sequence of measures un(xi,...,Xx,) with distribution function
Fn(x1,...,x,) satisfies a LDP, almost surely with respect to the randomness, with rate
function I (x1, .. xn) given by
Z — if (x,..,x) eV(sag, .., ap 0, ..., Q)
I(xy, ..., xy) = 1<l<n
+00 otherwise

where the region W(J; ay, ..., a,; a1, ..., a,) is given by

ko2 k

{(xl,...,xn) eR" Za— Jzir‘lnaiforalu <k<n
i=1 i=

Proof. First we do the case for (x,...,x,) € ¥(J;ai,...,a,; ay,...,a,). By Chebyshev’s
inequality, for all € € (0, 1),

_ - - 1 _ -
PAFy = Gnl > €Gi) < 52 B (IFy —GyI?).
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Now

and

1 otfv ilaé" i,,,lay
EFo=oxE(X> >0 0 X nngeny
=1 i =(i;—Dad +1 in=(in-1— Dol +1
= %ayplaévpz o 'Ol,llvpn
= pip2--:Pn
=Gy.

To obtain E(F3) we introduce some new notation. Let

ig=ap ka1 =igaf in=iy_jap
Ji=ap) Tkt =ik Je=in—red)
B, = Z ﬂ(k)]l(_k) Z ﬂ(k*'l)ll(_k*'l) . Z ]1(")]1(”)
k- e Jk L+l Jk+1 Ly " n
;ﬁill ikH:(ik—l)a,i:}_lH i,,:(i,,,lfl)a,’,l‘\’;]
Jrr1=Ug =D’y +1 Jn=Cjp—1—Day' +1

Now notice that the following recursion holds:

By = o) pi (Bk+1 + (o — 1) pr (ors Pret "'Ol,llvpn)z)

for all 1 < k < n. The initial value is B, = o} p, + («2V — ) p? but this may be

obtained by defining 5, := 1 and applying the above recursion for k = n. Notice also that
B(F) = o4 By

Alongside the above recursion, let us define a sequence D; by which we upper bound 5.
Let D, := 1 and define

Dic = i (Dt + Yk Gest =+ yn)°) -
This gives rise to

Di=y1y2- YL+ Yy, + Yo 1yp+- -+ y1y2 - Ya).

If we now take y, = a,ﬁv Pk, then it is clear that Dy > By forall 1 < k < n, hence the following
bound:

_ 1
B(F) = pa B

/
o)
o
2]

n
[T «'m <1+Za£’pk-~-aévpn)
k=1

1<k<n

=2VGy (1+Za,ﬂvpk'~a£’pn>.

k=1
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Thus

1 _ - 1 1 5
—E(IFy —Gn*) < —5 1 5:2VGh [1+)) o pe---a¥p | -G
GZ ( ) 62G2 221\/ ; k N

o[ _
= {2_NGN <1+Zaivpk-~-aivpn)—Gi/}

=2
Gy k=1
_ ! Levliv2ve o G’
_ezG_z N N + N*‘Z% Pk * W Pn)] — Gy
N k=2
e IS M
€22NGy k "
k=2
_ ak Pk - Pn
- 22NGN 62 Z 2NP1P2 - Dn
= z 1
T NGy e Lo pre o pre
R 1 XE 1
T NGy 62 051 P of pr

=5 Z 2.1

klalpl akpk

Using the inequality [~ e 2 du > L e~/ (see McKean [13]), the kth term in this sum
is bounded above by

24,472
iz l_[ VT QN3 +ai ) exp —2 JZZlna,+ Z

1<i<k xiJ/aiN <<k @

2
which will convergeif and only if 3, ;< 7= < J*X << Ine;. Thus itis seen that equation
(2.1) converges if all the sums of its individual terms converge. The values for which this
happens are precisely those which define the region W (J; ay, ..., a,; o1, ..., o) as stated in
the theorem. Introducing the events

AN = {{Ei(ll)’ PN El("n)}“G_N — FNl > GG_N]
we see that ) P(Ay) < +oo. Hence by the Borel-Cantelli lemma,
P (ﬂ U AN> =0.
v=1 N=v

This means that with probability 1,

(EV.... E™) (mUAN) ~ 0N 4

v=1 N=v v=1 N=v

In other words, for almost all {Ei(ll), R El(n")} there exists a v € N such that for all N > v,
{EV, ... E"} € AS. Hence Fy converges to Gy with probability 1 forall N > v
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For the case (xy,...,x,) € V(J;ai,...,a,; a1, ...,a,), it must hold that
2
X 2
Z a_z > J Z anl,-
1<i<k 1<i<k
for some k with 1 < k < n. We may now upper bound the function F y(x, ..., x,) by

; N
llotz Lg—10

_ 1
N ay M@ (k)
Py, o) S Sy e Z ) SEEEETED Y Fis FEPEes by
h=liy=(i;— ) +1 ix=(ir_1— Do +1
tlaz ik,la,f’
— Ma@ gk
= NZ 2. DI TS VARE
koii=lin=(—Dad+1 =G —Dal +1

= Hy(xq, ..., xz).
We will show that Hy (xy, ..., x;y) = 0 with probability 1 if N is large enough. We have

{ED. . EP)HyG, om0 =0

11a2

N
(£ BN Y

=l i=(i;— Do) +1

; N
Lg—100

S a® <

i =(ir_1— Doy +1

By Chebyshev’s inequality,

i) igref
(¥ o Y s
i1=1 i =i, —1)a) +1 ir=(ix-1— ey +1
il i1
<E Z oo Y i@ a®
i1=1iy=(i;—af +1 i=(ir-1—Dayg +1

= a{vn-a,iv}P’(E(l) > Nxi) --~]P’(E(k) > Nxp)

J.Ja; le.z
et e ] 2 :/—/ p(_wlz)
1<i<k =i i
J /i X2
l_[ ———— |exp{ N Z <1na,-— ’2>
1<ick 2XiVTN 1<i<k aiJ
Since
2
> ey e
1<i<k 1<i<k
the series

= J/a; o x?
I et A Zk<m“’ a,-12>

N=1 \1<i<k
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converges. Introducing the events

LN . N
ia) Q10

o
Av=EDCERIY Y o Y @ e

h=li=@;—Dal+1  ix=(ir_1—Da)+1

we see again by the Borel-Cantelli lemma, for almost all {Ei(ll), ce El.(kk)} there exists a
v € N such that for all N > v, {Ei(ll), e El(f)} € A$ and hence Hy (xy, ..., x;) = 0. Thus
we have:
. 1 - . 1
limsup —In Fy(xy,...,x,) <limsup —In Hy(xy, ..., x¢)
N N N N

3. The variational problem

We may re-write the partition function in (1.2) as

Zy(B) =2~ /

R

where Fy(xy, ..., x,) is given in (1.4). Using Varadhan’s lemma, we may evaluate —gf(8)
almost surely as follows:

exp{—NBx +---+x,)} dFn(x1, ..., Xp)

1
—f(B) = Jim —(InZx(8))
=In2+ sup (=B +---+x,) — I (xy, ..., x,)}

Performing the change of variables: x; = Jy; /a;, B’ = %,8] and y; = Ine;, the above
expression becomes

1 n
=In2+ 277 — inf !Z (vi = «/a—iﬂ’)Z]

where
k

k
Zyi2<2yifora111<k<n}.
i=1

i=1

v = {(yl,...,yn)eR"

3.1. Evaluation of the infimum in R"

Define the numbers B(j, k) forall 1 < j <k < n:

VitV

B(j, k) := .
(] ) aj+---+a

Let m( := 0 and recursively define the numbers m; as

m; = 1nf{m > m,-_llB(m,-_l + 1, m) < B(mi_l + 1, l) for all m;_1 + 1 < l < I’l}
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terminating at the value K such that mg = n. A crucial property of algebraic expressions
such as B(J, k) is the following: if a, b, c and d are positive reals, then % < g if and only if

% < #%. Define the sequence of inverse temperatures f; (i =0, ..., K +1) by

,3,~:=B(m,~_1+1,m,~) l=1,,K

and By := 0, Bk+1 := +00. Note that this sequence is increasing by the above property.

Lemma 3.1. If B; < B' < Bjs1 for some 0 < j < K, then the infimum is attained at X given
by

Biv/ai if ielm_i+1,...,m] forsome 1<I1<j
X =

B'ai if ielmj+1,...,n]
forall1 <i < n.
Proof. Let p; = ,/a; forall 1 <i < n. We will show that the point X with coordinates given

above is the point such that forall y € W', || ¥y — B'p || > || X — B'p ||. First, let us note two
trivial inequalities,

J m
DD Gi—Bp) =0 3.1
=1 i=m1,1+1

> i—Bp)=0. 3.2)
i=m;+1

Note that forall 1 <1 < j, (’3—/ —1) > 0. By the Cauchy-Schwarz inequality we have, for all

Bi
1<j <,

y m 12 / & 12
J mp j J my
2 2.2
D3 ﬁ,piy,.g(zyi) 3
I=1 i=m_y+1 i=1 I=1 i=m_y+1
1/2
my 12 /5 m /
2 2
s\v) (2f 2 P
i=1 I=1  i=m_p+l

Noticethat Y/, B2Y ", pF =D/ Y it Vi = iy vi andso the above expression
becomes

J m

§ : 2 § : 2
= IBI pi

=1 i=mj_;+1

Thus we have
J m
) BpiBipi—y) =0
=1 i=m1,1+1

forall 1 < j/ < jand y € W' Introducing the numbers (% — 1) into the sum, it is shown by
a recursive argument (see appendix) that

J / mp
> (% - 1) S BipiBipi— i) 2 0.

i=m;_1+1
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Multiplying the above inequality by 2 and re-writing we have

J m
2 > Bp

= Bipi)(Bipi — yi) = 0. (3.3)
=1 i=m1,1+1

Combining equations (3.1), (3.2) and (3.3) while noting that 8'p; =: x; (form; + 1 <i < n)
and By p; =: x; (for 1 <i < mj), we have

(=X -G+X—=28p) >0
Re-writing gives

| 5= BBI=15 -85 I
forall y € W', O

3.2. Expression for the free energy and conclusion

Applying the coordinates of our point of infimum to the expression for the free energy gives

the required expressions. Recalling g’ : ZﬁJ pi = J/a; and y; = Ina; gives
Corollary 3.2. The free energy is given by
In2+ 1ﬂ21 ? if B : B
n2+— i < —
4 g7
n ,32]2(11‘ J m m
¥ Qn%+. e | a [ X me
i=m;+l1 =1 i=m_+1 i=m;_+1
-Bf(B) = 2 2
if 7,3;‘ <B< 7,8j+1
K my my 2
J i 1 i ] - .
BIY_ || 2 af| X me if Shx < B
=1 1=m1,1+1 1=m1,1+1

Applying n = 2 to the above expression yields the same answer as Derrida [1]. In this case

the answer depends on whether a;/Ino; 2 a»/Ina,. If a;/Ino; > az/ Inay, then

12 2 ) 1
2+ 2P it g<= |2
J
1 2 1 2 1
—Bf(B) = lna2+1a2,32.]2+ﬂ]\/allna1 7/““1 <5 n o
a
2 1
,BJ\/allna1+,3J\/a21na2 if — na2<
J an
Otherwise,
J2B? 2vIn2
2+ 2P if g < J“
—Bf(B) =
2VIn2
BJIn2 if B> Jn ,



4394 T C Dorlas and W M B Dukes

Itis an easy exercise to see the solutions also concur for cases A and B in Derrida and Gardner
[14]. Notice that the Capocaccia et al [3] solution to the variational problem contains a few
minor flaws: in their notation, they should have JJ = 0 and the definition of B; should be
Bt =By 1

An added benefit of our approach is that in theorem 2.1 we have proved a LDP for
the measures y(xy,...,x,). This result contains much more information than is needed
for deriving the variational expression for the free energy. This leaves open the possibility
of calculating other aspects of the GREM. Moreover, variants of the model, where one for

example replaces the energies Ei(kk) by %( > Ei(kk))2 can also be solved.
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Appendix

Lemma A. Let x1, x2, ..., x, > 0 and {y;}]_, be a sequence of reals. Let G, := Z;"zl v; be
such that G,, > Oforall 1 <m < n. Then

Fy = Y iy > 0.

i=1
Proof. Let us define Gy = 0. Notice that y; = G; — G;_; forall 1 <i < n. Then

Fn) =Y x(Gi—Gi_y)

i=1

=x,G(m) + Y (i —x;-1)G (i)
i=1

>0
since x; — x;_; > O for all i. O
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